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Abstract

In this paper, the vibration of a cracked rotor sliding bearing system with rotor–stator rubbing is
investigated using harmonic wavelet transform (HWT). Three non-linear factors, non-linear oil film forces,
rotor–stator rubbing and the presence of crack, are taken into account. So the non-linear behavior of the
rotor will be much more complex. According to Newmark method, the dynamic response of the rotor is
calculated. Using HWT method, the effect of these non-linear factors is analyzed simultaneously in both
time and frequency domain. The numerical simulated result shows that HWT will be available to analyze
this multi-non-linear factors rotor effectively and can reveal the exact fault characteristics in detail.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In traditional dynamic analysis of rotor system, linear models based on the superposition
principle have been proven to be very useful. However, in practice, many systems are non-linear.
Especially, with more rapid angular velocity, there are many phenomena that cannot be explained
by linear model. To design or analyze real large turbo machinery, such as turbines, generators and
aviation engines, more and more non-linear factors have to be taken into account. There are same
questions in the filed of faults diagnosis. And recently, the coupling effect of multi-non-linear
factors on rotor system is a new focus.
To solve this question, the experts and technologists allover the world apply some advanced

techniques, such as computer techniques, updated non-linear dynamic theory, wavelet analysis
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techniques and nerve net techniques, etc. These techniques can overcome the disadvantage of
traditional methods. Harmonic Wavelet, one of orthogonal wavelets, was developed for practical
purpose by Newland [1–3]. Because of the outstanding capacity of time–frequency decomposition
and implementation arithmetic is simple and easy harmonic wavelet transform (HWT) is
employed in many fields, e.g., investigate the elastic beam vibration [4], to analyze the vibration
signal of rotating machines [5] and also to evaluate the dispersive phase and group velocities [6].
In this paper, a Jeffcott rotor sliding bearings system, with rotor–stator rubbing and a small

transverse crack on its shaft, is investigated. As Sekhar [7] has proved, the vibration of rotating
system will become more severe when its velocity is increasing. When the displacement of the disk
center exceeds the clearance of the stator and the rotor, there will be rub-impact. In this case, three
non-linear factors (non-linear oil film forces, rotor–stator rubbing and the presence of crack) may
affect the dynamic characteristics of the system simultaneously and make it become more
complex. Its unstable dynamic response should be calculated with numerical method and
analyzed using time–frequency technology. For the purpose of detection and diagnosis of these
faults, time–frequency maps of HWT are applied for showing the vibration characteristics in
detail.
The presence of crack and rotor–stator rubbing are two general faults in most rotor system and

there has been extensive research on them. A comprehensive survey of simple rotors with
transverse crack has been presented by Gash [8]. Sekhar has analyzed the transient response of
cracked rotor passing through critical speed [9] and investigated the effects of crack depth,
unbalance eccentricity with phase and acceleration [7]. Meng [10] has researched the dynamic
response in the sub-critical and super-critical speed range and used the cross-coupling stiffness
terms to detect crack. George [11] has presented a new method to identify the depth and the
location of a transverse surface crack by measuring the coupled response. Mayes [12] analyzed the
responses of multi-rotor bearing system when a rotor has a transverse crack.
On the other hand, investigation of the characteristics of rotor–stator rubbing is also extensive.

Beaty [13] has calculated the response in terms of a Fourier series expansion and explained the
various components of it. The transient response has been analyzed by Choy [14] and the effect of
imbalance load and friction has been discussed. Considering the oil film force, Chu [15] has found
that a rub-impact rotor system can exhibit very rich forms of motion, e.g., periodic, quasi-periodic
and chaotic vibrations.
All these works have helped research on the real rotor systems. But the coupling effect of the

crack and the rubbing is the keystone of this paper. HWT is applied to reveal its characteristics in
both time and frequency domains.

2. Equation of motion

Fig. 1 shows a simple Jeffcott rotor with transverse crack on its shaft in the inertial co-ordinates
x � y and rotating co-ordinates z� x: The disk is located at the midspan of the shaft and the
bearings at both ends are same, sliding ones.
If ðxd ; ydÞ and ðxb; ybÞ represent the co-ordinates of the center of the disk and the journal,

respectively. With constant angular velocity o; the equation of motion of the rotor sliding bearing
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system can be written as follows:

md .xd þ cð ’xd � ’xbÞ þ kxðxd � xbÞ ¼ mdg þ mdepo2 cos y;

md .yd þ cð ’yd � ’ybÞ þ kyðyd � ybÞ ¼ mdepo2 sin y;

mb .xb þ cð ’xb � ’xdÞ=2þ kxðxb � xdÞ=2 ¼ mbg þ Px;

mb .yb þ cð ’yb � ’ydÞ=2þ kyðyb � ydÞ=2 ¼ Py; ð1Þ

where md is the mass of the disk, mb is the mass at the bearings, c is external damping, ep is
eccentricity of the disk, and kx; ky are stiffnesses of the cracked shaft in x and y orientations,
respectively.

2.1. Crack model

There are several models of the cracked shaft. If a cracked shaft rotates slowly under the load of
its own weight, the crack will open and close once a revolution. Its breathing motion can be
described by the steering function f ðyÞ: Hinge model [7–9] and smooth function model [12] can be
used. For small cracks, Gash considered the simple hinge model as a good model [8]. The present
study assumes the dominance of weight, and the hinge model is adopted:

f yð Þ ¼
1; 0oyo

p
2
;
3p
2
oyo2p;

0;
p
2
pyp

3p
2
:

8><
>: ð2Þ

Based on the hinge model, the stiffness matrix for the cracked shaft can be derived [7,9]:

kx

ky

( )
¼ ks �

1

2
f ðyÞDkz

1þ cos 2y sin 2y

sin 2y 1� cos 2y

" #
; ð3Þ

where ks is the stiffness of the shaft without crack and Dkz is the variation of stiffness in z
orientation in rotating co-ordinates. The modulus of Dkz is far larger than that of Dkx: The
rotating angle satisfies y ¼ ot þ b and b is the phase between the eccentricity and the center of the
crack, i.e., crack angle.
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Fig. 1. Analytical model of rotor sliding bearing system and its rubbing force.
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2.2. Oil film force of the bearing

For a squeeze-film bearing, when it is static, the eccentricity of the center of the journal

eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2b þ y2b

q
; phase c ¼ arctgðyb=xbÞ and e ¼ eb=cp: Its basic lubrication equation governing the

oil film is the Reynolds equation can be written in the following form [16]:

1

R2

@
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h3

12Z
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þ
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h3

12Z
@p

@z

� �
¼
1

2
ðo� 2 ’cÞ

@h

@y
þ ’eb cos y; ð4Þ

where p is the supply pressure of the oil, h ¼ Cð1þ e cos yÞ is the oil-film thickness.
Under the assumption of short bearing approximation, the bearing-land length L is far less than

the bearing diameter 2R; and the variation of oil film force in the circumferential orientation
@p=@y can be neglected. The Reynolds equation can be rewritten as

@

@z

h3

12Z
@p

@z

� �
¼
1

2
ðo� 2 ’cÞ

@h

@y
þ ’eb cos y; ð5Þ

Then the pressure can be obtained by

pðy; zÞ ¼
3Z

C2ð1þ e cos yÞ3
z þ

L

2

� �
z �

L

2

� �
½�ðo� 2 ’cÞe sin yþ 2’e cos y�: ð6Þ

Radial and circumferential forces Pe and Pc emanating from the squeeze film are obtained by
integration of the pressure distribution over the entire journal surface:

Pe ¼ �
Z L=2

�L=2
dz

Z 2p

0

pðy; zÞcos yR dy;

Pc ¼
Z L=2

�L=2
dz

Z 2p

0

pðy; zÞsin yR dy: ð7Þ

Based on the Sommerfeld condition pjy¼p ¼ 0 and the boundary condition pjy¼0 ¼ 0; the oil film
forces can be obtained:

Pe ¼
1

2

ZLR3

c2P

L

R

� �2
½ðo� 2 ’cÞG1ðeÞ þ 2’eG2ðeÞ�;

Pc ¼
1

2

ZLR3

c2P

L

R

� �2
½ðo� 2 ’cÞG3ðeÞ þ 2’eG4ðeÞ�; ð8Þ

where

G1ðeÞ ¼
2e2

ð1� e2Þ2
; G2ðeÞ ¼

pð1þ 2e2Þ

2ð1� e2Þ5=2
; G3ðeÞ ¼

pe

2ð1� eÞ3=2
; G4ðeÞ ¼

2e

ð1� e2Þ2
;

Then projecting the oil film force Pe and Pc on the inertial co-ordinates x � y; we have

Px ¼ �Pe sin cþ Pc cos c;

Py ¼ Pe coscþ Pc sin c: ð9Þ
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2.3. Rubbing force

As Sekhar [7,9] has proved the transient vibration responses of Eq. (1) may develop oscillation
near the critical speed. With a different parameter, the vibration may be more violent or less
severe. If the displacement of center of the disk ed does not exceed the radial clearance d between
bearing outer race and stator at rest, there is no rubbing and there are no forces. Or else, rubbing
happens and the forces may influence the responses. The rubbing forces are the normal force Fn

and the frictional force Ft [13,15]

Fn ¼
0 ðedodÞ;

ðed � dÞkc ðedXdÞ;

�����
Ft ¼ fFn; ð10Þ

where kc is radial stiffness of stator and f is coefficient of friction. With sin j ¼ yd=ed and
cosj ¼ xd=ed ; the rubbing force F can be described as follows:

Fx

Fy

" #
¼

0

0

" #
ðedodÞ;

Fx

Fy

" #
¼ �

kcðed � dÞ
ed

1 �f

f 1

" #
xd

yd

" #
ðedXdÞ: ð11Þ

Therefore, when the rotor system is rubbing, its dynamic equations can be rewritten as

md

.xd

.yd

( )
þ c

’xd � ’xb

’yd � ’yb

( )
þ

kx 0

0 ky

" #
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yd � yb

( )
¼
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( )
þ

mdg þ mdepo2 cos y

mdepo2 sin y

( )
;
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.yb

( )
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c

2
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" #
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( )
¼
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0

( )
þ

Px
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( )
: ð12Þ

Substituting Eqs. (3), (8) and (10) into Eq. (11), the equation of motion of casing rotor–stator
rubbing can be written in dimensionless form by dividing both side by mdo20:

x00
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; ð13Þ
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where m ¼ o=o0 in which o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ks=md

p
; a ¼ mb=md ; b ¼ kc=ks; Dk ¼ Dkx=ks (the crack

parameter), D ¼ c=2o0md ; Wg ¼ g=o20; W ¼ mbg þ 1
2 mdg and Sommerfeld number S0 ¼

Zo0RL=pW ðR=cpÞ
2 [16].

3. Numerical results and its harmonic wavelet transform

3.1. Harmonic wavelet transform and wavelet maps

Wavelet transform is one of the fundamental correlation methods. The wavelet coefficient aðtÞ;
which provides information about the input signal f ðtÞ and its relation to the shape of wavelet
function wðtÞ; is defined by the following correlation equation:

aðtÞ ¼
Z

N

�N

f ðtÞw�ðt� tÞ dt; ð14Þ

where w�ðtÞ is the complex conjugate of wðtÞ: If f ðtÞ correlates with wðtÞ; aðtÞ will be a large value.
If they do not correlate, aðtÞ will be very small. Any waveform can be used for the wavelet if it is
localized at a particular time.
Harmonic wavelets are orthogonal wavelets. In the frequency domain, harmonic wavelets are

simple structured as

Wm;nðoÞ ¼

1

ðn � mÞ2p
; m2ppopn2p;

0; elsewhere;

8<
: ð15Þ

where n and m are real but are not necessarily integers. So the harmonic wavelets can be related to
the ideal bandpass filter. Harmonic wavelet functions, wm;nðtÞ; in the time domain can be obtained
from the inverse Fourier transform of Wm;nðoÞ:

wm;nðtÞ ¼
ejn2pt � ejm2pt

jðn � mÞ2pt
; ð16Þ

where j ¼
ffiffiffiffiffiffiffi
�1

p
: If this wavelet is translated by step k=ðn � mÞ; Eq. (16) becomes

wm;n t �
k

n � m

� �
¼
ejn2pðt�ðk=ðn�mÞÞÞ � ejm2pðt�ðk=ðn�mÞÞÞ

j2pðn � mÞðt � ðk=ðn � mÞÞÞ
; ð17Þ

which is the expression for a general harmonic wavelet of bandwidth 2ðn � mÞp that is centered at
t ¼ k=ðn � mÞ:
The wavelet transform allows an arbitrary function f ðtÞ to be expressed as a series expansion,

just like the Fourier expansion. For harmonic wavelet described as Eq. (17), the corresponding
expansion formula is

f ðtÞ ¼ a0 þ
X
m;n

Xn�m�1

k¼0

am;n;kwm;n x �
k

n � m

� �
þ a�

m;n;kw�
m;n x �

k

n � m

� �� �
; ð18Þ
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where am;n;k and a�m;n;k are the complex harmonic wavelet coefficients and are defined by

am;n;k ¼ ðn � mÞ
Z

N

�N

f ðtÞw�
m;n t�

k

n � m

� �
dt;

a�
m;n;k ¼ ðn � mÞ

Z
N

�N

f ðtÞwm;n t�
k

n � m

� �
dt: ð19Þ

If the real function fr; i.e., the discrete series of f ðtÞ with r ¼ 0 to N � 1 (N ¼ 2n), is analyzed by
the DFT into its harmonics, then according to Parseval’s theorem

1

N

XN�1

r¼0

f 2r ¼
Xn�1
i¼0

jFij2: ð20Þ

For harmonic wavelets of bandwidth m2ppopn2p; the corresponding expansion equation is

1

N

XN�1

r¼0

f 2r ¼ a20 þ
X
m;n

2

n � m

Xn�m�1

k¼0

jam;n;kj2 þ a2N=2: ð21Þ

If the bandwidth increases in octaves, Eq. (21) becomes

1

N

XN�1

r¼0

f 2r ¼ a20 þ
Xn�2
i¼0

1

2i�1

X2i�1

k¼0

ja2iþkj
2 þ a2N=2: ð22Þ

Based on this equation, the harmonic wavelet coefficients can be calculated by FFT and IFFT as
Newland [2,3] had expressed. For a real input sequence of length 24 ¼ 16; the implementation
procedure can be illuminated as Fig. 2. And the wavelet map, which is obtained by plotting the
magnitude of the wavelet coefficients with time and frequency, is usually adapted to describe
the characteristics of transient oscillation signal. Newland used grid base (as Fig. 3) to explain the
harmonic wavelet maps. There are n þ 1 wavelet levels running from �1 to n � 1; and 2n�2 position
steps. At level �1, all the heights are set equal to a20; at level ipðn � 1Þ; there are 2i positions and
two amplitudes are located at each position. The two terms are complex conjugates. Therefore, the
sum of these two terms is equal to two times the first term (Fig. 3): ja2iþkj

2 þ ja2n�2i�kj
2 ¼ 2ja2iþkj

2;
where k ¼ 0B2i � 1: More wavelet levels, equivalent to greater frequency discrimination on the
y-axis, means fewer position steps, which gives less precision of position on the x-axis.

3.2. Vibration analysis by HWT

The transient vibration response of Eq. (13) is always unstable. As described above, the
harmonic time–frequency maps can reveal its characteristics in detail. With the following data of
the rotor-system, D ¼ 0:12; f ¼ 0:025; Dk ¼ 0:35; b ¼ 3; ep ¼ 0:1 mm; d ¼ 0:1 mm; j0 ¼ 0; a ¼
0:10; S0 ¼ 0:06; and assuming the initial value is x ¼ y ¼ 0:001 and vx ¼ vy ¼ 0:0; the transient
response can be calculated using Newmark method and analyzed by HWT.
Fig. 4 shows the frequency spectra, time–frequency mesh maps and time–frequency contour

maps of the system. From its frequency spectra, many frequency components can be found. In
this paper, wavelet maps include two kinds, time–frequency mesh maps and time–frequency
counter maps. They are always used together to show the characteristics of signals. Time–
frequency contour maps are projections of time–frequency mesh maps. And levels on the y-axis
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are related to frequency, positions on x-axis are related to time. Ridges of mesh maps are the
square of wavelet coefficients. Then wavelet maps will show the signals in time and frequency
domain simultaneously. In x orientation, the maximal peak appears between 128 and 256
positions. During 512–640 positions and 768–896 positions, there are other peaks too. In y

orientation, the responses are stable between 512 and 640 positions, so its contour is zero. During
positions 128–256, 384–512 and 768–896, its contours are dense, and their corresponding maps
appear as peaks. According to Fig. 4, especially, during positions 384–640 and 896–1024 the
contour maps are entirely different in both orientations.
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Fig. 2. Implementation procedures of HWT for a real input fr; r ¼ 0� 15:
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Without considering the bearing oil film force and keeping other parameters invariable, the
frequency spectra, time–frequency mesh maps and time–frequency contours of the system are
showed by Fig. 5. Comparing Fig. 5 with Fig. 4, it can be easily found that differences are
obvious. Without oil film force, its responses in x orientation are located on the 4th wavelet
decomposition level. Its contours keep almost the same density in all positions. Its time–frequency
mesh maps almost have the same peak too. But in y orientation, its contours do not centralize at
one level but spread from 2 to 5 levels. The variety of the ridges is not so remarkable as in
Fig. 4(e). According to this, the effect of oil film force on the rotor system is tremendous. To
investigate a real rotor system, the force from the bearing oil film must be considered.
As explained above, if the displacement of center of the disk ed does not exceed the radial

clearance d between bearing outer race and stator at rest, there is no rubbing and there
are no forces. In this case, the corresponding wavelet maps are presented as Fig. 6. In comparison
with Fig. 4(a), the high frequency components of its spectra disappear. During positions
1–128 its x orientation contours and time–frequency mesh maps become more complex.
After 128 positions, its contours are almost of the same density and its peaks of time–frequency
maps vary unremarkably. But the contours decentralize from 2 to 4 levels. In y orientation,
there are no zero contours. And its contours are similar as in x orientation. Based on comparison
of Fig. 6 with Fig. 4, the effect of the rub-impact force on the rotor system can be
explained clearly. Whether the possibility of rub-impact is considered or not, the rotor
system may exhibit different dynamic characteristics. This requires us to pay attention to
this question.
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Fig. 5. Spectra, time–frequency mesh maps and contour maps of cracked rotor system casing rubbing and no oil film

force.

Fig. 6. Spectra, time–frequency mesh maps and contour maps of cracked rotor sliding bearing system casing no

rubbing.
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In Eq. (13), if Dk ¼ 0; the effect of crack is zero. There are only two non-linear factors in this
system, oil film force and rub-impact force. The rotor system becomes a rotor supported by oil
film bearings and rotor-to-stator rubbing occurs. In this case, its spectra and analysis results by
HWT are illustrated in Fig. 7. There are zero contours in both x and y orientations during
positions 128–256. After 256 position, its ridges are almost invariable in both orientations.
Between positions 1 and 128 there are sparse contours and corresponding peaks are there in time–
frequency mesh maps. Comparing with Fig. 4, its dynamic characteristics in this case are
completely different. These great peaks in Fig. 4 all disappear, and the positions of these zero
contours are also different. These tell us that the effects of rub-impact force and the crack are
coupled and should not be investigated.

4. Conclusion

From the analysis, several conclusions can be drawn. Firstly, HWT may be a feasible and
efficient technique to analyze a multi-non-linear factors rotor. The time–frequency mesh maps
and contours can reveal the dynamic characteristics of the rotor system in detail. They can reveal
many complex characteristics that cannot be discovered by FFT spectra. Secondly, the effect of
the bearings oil film force on system is significant and should be considered adequately. In sliding
rotor, the oil film forces always exist. To analyze and diagnose this rotor system, the supporting
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Fig. 7. Spectra, time–frequency mesh maps and contour maps of non-cracked rotor sliding bearing system casing

rubbing.
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bearings and its forces must be considered. Thirdly, the effect of multi-non-linear factors is
coupling and must be considered simultaneously. It is necessary to consider each vital factor and
set up a reasonable non-linear dynamic model. Then, detection and diagnosis of rotor bearing
system can be performed accurately.
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